Transcatheter Aortic Valve Implantation (TAVI) -5 important lessons learnt from HK experiences

Michael KY Lee

Queen Elizabeth Hospital, Hong Kong President, HKSTENT

APCASH 2013

Current Status of TAVI in Asia Feb 2010 to July 2013

	Total 672	Edwards 304	CoreValve 368
Asan Medical Center	87	36	51
Yonsei University	29		29
Seoul National University	23	-3	20
Sam Sung Medical Center	10	10	
Catholic Medical Center	7	7	
Kenes (23%)	156	56	100
Chiam, Tay, Singapore	130	100	30
Lee, Lan, Hong Kong	52	2	50
Paul Kao, Chang, Taiwan	52	12	40
Philippine	22		22
Thailand	36	20	16
Japan	165	100	65
China	35	10	25
Malaysia	24	4	20

CoreValve implants as of Aug 10th, 2013 (excluding ANZ)

Country	Total CoreValve Implants
Korea	100
Japan	70
Taiwan	54
Hong Kong	53
China	45
Singapore	31
Malaysia	28
Philippines	26
Thailand	16
India	16
Vietnam	1
TOTAL	440

Hong Kong Experience

Dec Queen E Hos	2010 Elizabeth pital	Nov 2011 Prince of Wales Hospital	June 2013 Union Hospital	
2010	2011	2012	2013	
	Ma HK A Hc	a <mark>y 2011</mark> Adventist ospital	Dec 2012 Queen Mary Hospital	

Hong Kong Experience

27

18

2

Medtronic CoreValve - 53

Edwards Sapien - 2

- Queen Elizabeth Hospital
 - Prince of Wales Hospital
 - HK Adventist Hospital
 - Queen Mary Hospital
 - Union Hospital

QEH Registry

Characteristic (N = 27)	Number (%) or Mean \pm SD
Age (yrs.)	81.6 ± 5.2 (70 – 97 years old)
Males	18 (66.7%)
Procedural Success	96.3%
In-hospital Mortality	3.7%
30-day Mortality	3.7%

- 1 subclavian vascular complication treated with stent graft
- 1 femoral artery dissection treated with stenting
- All femoral wounds closed with Prostar/Proglide x 2
- One patient had PCI to LAD done before TAVI, returned for NSTEMI and with redo-PCI done, died 3 months after TAVI because of acute coronary stent thrombosis
- Most patients have functionally normal CoreValve with trivial to mild AR, 3 mild to mod AR

Procedure

Subclavian 4.0%

Direct Aortic 0%

Transfemoral 96.0%

Clinical Outcomes after Transcatheter Aortic Valve Implantation in Asia – Results of a Multicentre Registry

Paul TL Chiam¹, Michael KY Lee², Won-Jang Kim³, Edgar L. Tay⁴, Wacin Buddhari⁵, Mao-Shin Lin⁶, Hyo-Soo Kim⁷, Yat-Yin Lam⁸, Mann Chandavimol⁹, Cheol-Woong Yu¹⁰, Pranya Sakiyalak¹¹, Qing-Shen Lu¹², Paul HL Kao⁶, Cheuk-Man Yu⁸, Tian-Hai Koh¹, Jimmy Hon⁴, Fabio E Posas¹³, Mohd A Rosli¹⁴, Seung-Jung Park³

- National Heart Centre Singapore;
 Queen Elizabeth Hospital, Hong Kong;
 Asan Medical Centre, South Korea;
 National University Hospital, Singapore;
 King Chulalongkorn Hospital, Thailand;
 National Taiwan University Hospital, Taiwan;
- 7. Seoul National University Hospital, South Korea; 8. Prince of Wales Hospital, Hong Kong
- Ramthibodi Hospital, Thailand; 10. Sejong General Hospital, South Korea; 11. Siriraj Hospital, Thailand; 12. PLA Changhai Hospital, China; 13. St. Luke's Medical Centre, Philippines; 14. National Heart Institute, Malaysia

Characteristics

Comparison of QEH Registry – Asia Registry – ADVANCE

Characteristic	QEH Registry N = 27	Asia Registry N = 140	ADVANCE N = 996
Age (yrs.)	81.6±5.2	79.1±6.6	81±6
Males	66.7%	51.4%	49.4%
Mean Log EuroSCORE	$20.45 \pm 12.1\%$	19.2 ± 15.9%	$19.2 \pm 12.4\%$
Weight (kg)	57.7±8.7	59.1 ± 11.9	NR
Height (cm)	160.6 ± 7.3	158±9	NR
Mean NYHA	2.6 ± 0.6	2.6±0.7	NR
MPG (mmHg)	52.3 ± 10.6	46 ± 24	45.6
AVA (cm ²)	0.7 ± 0.2	0.7 ± 0.2	0.7
LVEF	57±10.6%	57±11%	NR

Procedure & Hemodynamics Comparison of QEH Registry – Asia Registry – ADVANCE

Variables	QEH Registry N = 27	Asia Registry N=140	ADVANCE N=996
Procedural success	96.3%	98.6%	97.8%
Serious vascular complications	7.4%	3.6%	NR
Hemodynamics			
≤ Mild PVL	88.9%	84.3%	87%
LVEF	$60\pm7.9\%$	$61\pm10\%$	NR
AVA (cm²)	2.0 ± 0.3	1.7 ± 0.7	1.7
MPG (mmHg)	8.9 ± 2.7	9±6	9.3

NR= Not Reported

30-day Outcomes Comparison of QEH Registry – Asia Registry – ADVANCE

Variables	QEH Registry N = 27	Asia Registry N=140	ADVANCE N=996
Mortality	3.7%	2.1%	4.5%
Stroke	0%	0.7%	2.9%
NYHA	1.4	1.5	NR
Pacemaker Implantation	14.8%	15.7%	26.3%

NR= Not Reported

30-Day All-Cause Mortality

- 1. Medtronic Data on File. COR 2006-02: 18 Fr Safety & Efficacy Study Re-Analysis, August 14, 2009.
- 2. Meredith. VARC-adjudicated Outcomes in Inoperable and High Risk AS Patients. TCT 2010, Washington, DC.
- 3. Avanzas P, Munoz-Garcia AJ, Segura J, et al. Percutaneous implantation of the CoreValve[®] self-expanding aortic valve prosthesis in patients with severe aortic stenosis: early experience in Spain. *Rev Esp Cardiol.* 2010;63:141-148.
- 4. Eltchaninoff. French Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
- 5. Bosmans. Belgian Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
- 6. Zahn. German Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
- 7. Ludman. UK Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
- 8. Petronio. Italian Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.

30-Day Stroke Rate

1.

2. 3. 4. 5. 6.

7.

Medtronic. Data on file. COR 2006-02: 18 Fr Safety & Efficacy Study Re-Analysis, August 14, 2009.
Meredith. VARC-adjudicated Outcomes in Inoperable and High Risk AS Patients. TCT 2010, Washington, DC.
Eltchaninoff. French Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
Bosmans. Belgian Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
Zahn. German Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
Ludman. UK Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.
Petronio. Italian Registry, TAVI Facts, Figures and National Registries. EuroPCR 2010, Paris, France.

Pacemaker Implantation Rates Across Studies

1. Meredith I.T. 12 Month Results from ANZ CoreValve TAV Study. Presented at: TCT 2011. 2. Avanzas P, et al. *Rev Esp Cardio* 2010;63:141-148. 3. Cribier A. FRANCE II Multicenter TAVR Registry. Presented at: TCT 2011. 4. Bosmans J. Belgian TAVI Reg Presented at: London Valves 2011. 5. Zahn R., et al. *European Heart Journal*. 2011; 32:198-204. 6. Moat N.E., et al. *JACC*. 201 Brito F.S. Brazilian Registry. Presented at TCT 2011. 8. Petronio AS. Italian Registry. Presented at: EuroPCR 2010. 9. Ruiz C.E. Weighted meta-analysis of CoreValve[®] Outcomes.Presented at: EuroPCR 2011 (analysis sponsored by Medtronic, Inc.).

Vascular Complications

1. Meredith I.T. 12 Month Results from ANZ CoreValve TAV Study. Presented at: TCT 2011. 2. Avanzas P, et al. *Rev Esp Card*. 2010;63:141-148. 3. Brito F.S. Brazilian Registry. Presented at TCT 2011. 4. Cribier A. FRANCE II Multicenter TAVR Registry. at: TCT 2011. 5. Ruiz C.E. Weighted meta-analysis of CoreValve[®] Outcomes. Presented at: EuroPCR 2011 (analysis sponsored Medtronic, Inc.).

Mean Gradient & Valve Area

The PARTNER Trial

CoreValve ADVANCE Study

QEH | Symptom Status (NYHA Class)

NYHA Classification

* NYHA: New York Heart Association Functional Classification for Heart Failure Stages

(Class I = Best, Class IV = Worst)

6-Minute Walk Test

Measurement for Quality of Life (SF-12)

Physical Component

Paired-sample t-test: *p*<0.05

Mental Component

Paired-sample t-test: *p*<0.05

5 important lessons learnt...

The Multidisciplinary Heart Team

TAVI Program in QEH

- Extremely high-risk procedure
- Multi-disciplinary Heart Team formed in 2009:
 - Interventional Cardiologists
 - Echo Cardiologists
 - Cardiac Surgeons
 - Cardiac Anaesthesiologists
 - Radiologists
 - Cardiac Nurses

Queen Elizabeth Hospital Patient Flow

...Patient selection is a critical success factor for transcatheter aortic valve implantation...

ESC Congress 2010 Thomas, J Am Coll Cardiol Intv 2010;3:1103–9

Potential TAVI Patients

Patients to Consider for TAVI Referral

- Patient has severe, symptomatic aortic stenosis
- Patient is high risk for surgical aortic valve replacement or is inoperable
- Patient was previously rejected for surgical aortic valve replacement

Patients NOT Recommended for TAVI Referral

- Severe ventricular dysfunction (LVEF < 20%)
- End-stage renal disease requiring chronic dialysis
- Life expectancy less than 12 months

– Mitral regurgitation greater than grade 2

Who Is Too Sick for TAVR?

Patients in whom the presence of multiple comorbidities, especially frailty, overwhelm the likelihood of functional recovery despite successful TAVR

Proposed Indication for TAVI

- Inoperable severe symptomatic native aortic stenosis with NYHA functional class II or greater and reasonable life expectancy
 - Severe symptomatic native aortic stenosis defined as echo derived valve area of $\leq 0.8 \text{ cm}^2$ (EOA index $\leq 0.5 \text{ cm}^2$), and mean gradient > 40 mmHg or jet velocity > 4.0 m/s.
 - Inoperable:
 - Risk of death or serious irreversible morbidity of SAVR as assessed by cardiologist and cardiac surgeon is ≥ 50% at 30 days.

Pre-TAVI imaging assessment

- TTE +/- TEE
- Coronary angiogram +/- Aortogram & Peripheral angiogram
- MSCT

Major roles of CT in TAVI

- Iliofemoral Arterial Sytem
 - Size, Calcification, Tortuosity, Plaques
- Annulus size measurement
- 3D annular & root morphology & dimensions
- Amounts of calcium in valve
- Relationship of annulus to both coronary ostia
- Valve positioning during implantation
- Post TAVI assessment

Known Predictors for PPM in CoreValve

81/270 pts (33%) permanent PM within 30 days; Median time = 4 days Baseline ECG: RBBB 65.2%, LBBB 43.8%, and normal QRS 27.6%

- 1. Peri-AVB (OR 6.29, P<0.001),
- 2. Balloon pre-dilatation (OR 2.68, P<0.001),
- 3. Prolonged QRS duration (baseline) (OR 3.45, P=0.02)
- 4. Large CV prosthesis (29mm) (OR 2.50, P=0.019)
- 5. IV septum diameter (OR 1.18, P=0.025),
- 6. Depth of implantation (too low & deep),
- 7. Calcification several small sized of articles

Permanent Pacemaker Predictor Analysis from Multicenter Registry for CoreValve in Asia

- 117 patients (81.2±5.1 years) from 6 centers
- 23 patients (19.7%) required PPM, within a median time-to-insertion of 7 days (interquartile range, 5–13 days)
- QCA analysis, CT diameter, CT perimeter analysis in all Patients

Stretching Index

Device Perimeter (Calculated)

Annulus Perimeter

Stretching Index Cut-Off for Permanent Pacemaker

Device Perimeter > 1.13 Annulus Perimeter

Sensitivity 86.96% Specificity 94.68% PPV 80% NPV 96.74% Accuracy 93.2%

Implanted Depth Cut-Off for Permanent Pacemaker

Implanted Depth > 7.8 mm

Sensitivity 60.87% Specificity 74.47% PPV 35.14% NPV 87.5% Accuracy 70.94%

Combined Criteria Of Depth and Stretching Index

1.13 Stretching Index

Logistic regression p<0.0001, AUC 0.97, 95% CI=0.94-0.99

Not too big and not too deep

Appropriate Size of Device Selection (CT perimeter Stretching Index < 1.13) And Shallow Implantation (Depth < 7.8 mm) -Can Avoid Permanent Pacemaker Insertion after CoreValve.

Complication management & Simulator training

- CoreValve Simulator training (Symbionix)
- Scenario simulation for TAVI Heart Team on complication management
- Debriefing sessions post-TAVI

Flexible Solutions The ANGIO Mentor[™] family of products exemplifies Simbionix's commitment to provide educators and clinicians with flexible, cost-effective solutions suitable for a wide range of settings. and the

Aortic Valve Replacement

Provides practice on endovascular implantation of an aortic valve bioprosthesis. The practiced steps include navigating through the aortic arch and crossing the LV using fluoroscopy and cineangiography to find the best angulation for visualizing the aortic valve annulus, pressure gradient measurements, aortic balloon valvuloplasty including rapid pacing and accurately positioning and deploying an aortic valve bioprosthesis. Complications include LV perforation. Virtual patients vary in heart orientations, annulus sizes, degrees of valve calcification and LV hypertrophy.

5 important lessons learnt

- Multi-disciplinary Heart Team
- Patient Selection
- Pre-TAVI imaging assessment
- Size of CoreValve and depth of implantation
- Complication management & Simulator training

Surgical AVR The "Past"

TAVI *The "Future"*

